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Acceptance sampling plans from a truncated life test based on the 
power Lomax distribution with application to manufacturing  
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ABSTRACT 

In this research, a new acceptance sampling plan for a truncated life test is presented, 
assuming that the quality characteristic follows the power Lomax distribution. The operating 
characteristic function values are calculated for the proposed sampling plan, jointly with the 
optimal sample size and the producer’s risk for a selection of distribution parameters. 
Furthermore, a comparative study with other sampling plans is introduced to demonstrate 
the advantages of the proposed plan. Finally, a real-life example illustrating the applicability 
of the proposed sampling plan in a manufacturing company is discussed. 

Key words: acceptance sampling plan, operating characteristic, power Lomax distribution, 
industry, data analysis. 

1.  Introduction 

Acceptance sampling plans play a very important role in the statistical quality control, 
especially in the lot production process to decide whether to reject or accept the lot  
(Al-Nasser and Al-Omari, 2013). The decision on the quality of all entire items in each 
lot depends on drawing a random sample of size n from a selected lot; after that, within 
a specific timeframe, testing procedure is initiated to discover the number of failure or 
defective items included in the sample before the pre-indicated time is terminated  
(Al-Nasser and Gogah, 2017; Al-Omari et al., 2016; Malathi and Muthulakshmi, 2017). 

Then, the problem is to find the optimal sample size n that is necessary to assure 
a certain average life, when the life test is terminated at a pre-assigned time t. Such that 
the observed number of failures does not exceed a given acceptance number c. 
Accordingly, the decision is to reject all entire items in the lot if the number of failures 
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in the sample within the timeframe is greater than the pre-assigned acceptance number 
(c); elsewhere the lot is accepted. 

Many authors proposed truncated life test plans for different lifetime distributions. 
For example, Epstein (1954) was the first who considered truncated life tests in the 
exponential distribution. The truncated life tests in the Pareto distribution of the second 
kind are discussed by Baklizi (2003). The Rayleigh model is proposed by Baklizi et al., 
(2005). The generalized Birnbaum-Saunders Distribution is discussed by Balakrishnan 
et al., (2007). The Marshall-Olkin extended Lomax distribution is given by Rao et al., 
(2008). The generalized exponential distribution is considered by (Rao, 2010). The new 
Weibull-Pareto distribution is proposed by Al-Omari et al., (2016), weighted 
exponential distribution is discussed by Gui and Aslam (2017), exponentiated 
generalized inverse Rayleigh distribution is discussed by Al-Nasser et al., (2017). The 
inverse gamma model is given by Al-Masri (2018), and Tsallis q-exponential 
distribution is proposed by (Al-Nasser & Obeidat, 2020).  

The purpose of this article is to develop and discuss an acceptance sampling plan 
(ASP) for a truncated life test on the power Lomax distribution (PLxD) and illustrate 
the results on manufacturing data. The rest of the paper is organized as follows. Section 
2 is based on summaries of PLxD and some of its properties. ASPs and operating 
characteristic (OC) values and the producer’s risk for PLxD are analysed. The analysis 
and illustrative examples are presented in Section 4.  A comparative study between the 
proposed ASP and other sampling plans based on different distributional assumptions 
is discussed in Section 5. A real manufacturing data analysis is given in Section 6. 
The work is concluded in Section 7.  

2.  The Power Lomax distribution  

Power Lomax distribution (PLxD) originally proposed by (Rady, Hassanein, 
& Elhaddad, 2016) is a lifetime distribution obtained by taking the power of the Lomax 
distribution random variable. The PLxD distribution is very flexible due to its variable 
shapes of hazard rate, which accommodates both inverted bathtub and decreasing.  

The probability density function (pdf) of PLxD is  

𝑓 𝑥 𝛼𝛽𝜆 𝑥 𝜆 𝑥 ,       𝑥 0,                   𝛼, 𝛽, 𝜆 0.                 (1) 
The corresponding cumulative distribution function (CDF) is  

𝐹 𝑥 1 𝜆 𝜆 𝑥                                                                                       (2) 
From Figure 1 it can be easily concluded that the shapes of PLxD have a decreasing 

behaviour for β < 1, the distribution has an exponentially decreasing behaviour but 
starting from the y-axis for β=1. For β > 1 the pdf curves of the model are unimodal and 
symmetrical for some combinations of parameters. 
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Figure 1. pdf and CDF of PLxD for some given parameter values 

The PLxD has the following properties. The rth moments about origin and mean 
of PLxD are, respectively: 

𝜇
𝛼𝜆  Γ 𝛼 Γ

Γ 1 𝛼
  

Therefore, the mean of PLxD is given as: 

 𝜇
 

                                                                      (3) 
The PLxD has an increasing-decreasing hazard rate function, for more details see 

(Rady, Hassanein, & Elhaddad, 2016).  

3.  The suggested sampling plans  

Suppose that the lifetime of the products being tested follows the PLxD as given 
in (1) and the specified mean lifetime is μ0. Now, the ASP problem is to find the optimal 
sample size that ensures an actual average life (μ) such that no more than c units fail to 
pass the test period (t). To perform the test according to this plan, a random sample of 
size n units is selected from a lot. If μo can be obtained with a pre-assigned probability, 
P∗, as specified by the consumer, then the lot is accepted. If not, then it is rejected.  

Following Al-Nasser and Obeidat (2020), the ASP-based on truncated life tests 
consists of the following parameters: 

1) The sample size: number of units’ n to be drawn from the lot. 
2) The test duration t: the maximum test duration time. 
3) Acceptable number of defective (d) items: c; if d ≤ c remains the same until the end 

of the test period t0, the lot is accepted. 
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4) The minimum ratio t/μo: where μ0 is the quality parameter of the product life; and 
t is the maximum test duration. 

5) The ASP parameters will be (n, c, t/μo). 

3.1.  Optimal sample size of the ASP (n, c, t/μo) 

Let P* be the confidence level where P∗∈ (0,1); in the sense that the possibility of 
rejecting a considered lot having a specified mean less than or equal to the actual mean 
(μ0 ≤ μ) is greater or equal to P*. The shopper’s risk, that is the probability of accepting 
a defective lot, is fixed and less or equal to 1–P*. Also, suppose that the lot size is large 
enough to use the binomial distribution. Then, the problem of the ASP (n, c, t/μo) is to 
find the minimum sample size n such that the number of defective units d does not 
exceed c, to ensure that μ > μ0 satisfies the following inequality: 

∑
𝑛
𝑖 𝑝 1 𝑝 1 𝑝∗                                                               (4) 

where  

𝑝 𝐹 𝑡; 𝜇 1 𝜆

⎝

⎛𝜆
𝑡

𝜇

𝛼𝜆  Γ 𝛼 Γ

Γ 1 𝛼
⎠

⎞  

By using the binomial theory, the probability of success in (4), which is used for 
finding a defective item in each a lot during the test process time t, is p = F(t; μ0); this 
probability in terms of distribution function is a monotonically increasing function of 
the ratio t/μo. Then, for the acceptance sampling ASP (n, c, t/μo) and inequality (4), we 
assure that F (t; μ) ≤ F(t; μ0) with probability P∗, or alternatively μ0 ≤ μ. The results for 
this plan when the lifetime distribution is PLxD with 𝛼 1;  𝛽 2 𝑎𝑛𝑑 𝜆 1 are 
given in Table 1, under the classical initial values of the ratio t/μ0 = 0.628, 0.942, 1.257, 
1.571, 2.356, 3.141, 3.927, 4.712, when P* = 0.75, 0.9, 0.95, 0.99 and c = 0, 1, 2, ... , 
10 (Gupta and Groll, 1961; Kantam and Rosaiah, 2001; Baklizi, 2003; Baklizi et al., 2005; 
Al-Nasser et al., 2018; Al-Masri, 2018; Al-Omari et al., 2019). 

3.2. Operating characteristic function of the ASP (n, c, t/μo) 

Operating characteristic (OC) function is an important parameter in the ASP, 
it provides the exact information about the probability of acceptance of a lot. For the 
ASP (n, c, t/μo), the OC can be computed using binomial distribution as: 

𝑂𝐶 𝑝
𝑛
𝑖 𝑝 1 𝑝  

which can be computed using the incomplete beta function 𝐵 𝑎, 𝑏  as: 

𝑂𝐶 𝑝 1 𝐵 𝑐 1, 𝑛 𝑐  

where p = F(t; μ). Table 2 presents the OC function values for the ASP (n, c, t/μo). 
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Table 1.  Minimum sample size to assert that the mean life exceeds a given value 
0  with probability *P  

and acceptance number c based on binomial probabilities when 𝛼 1;  𝛽 2 𝑎𝑛𝑑 𝜆 1 

*P  0/t 
c 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 

0 3 2 1 1 1 1 1 1 
1 5 3 3 3 2 2 2 2 
2 7 5 4 4 3 3 3 3 
3 10 7 6 5 4 4 4 4 
4 12 8 7 6 6 5 5 5 
5 14 10 8 8 7 6 6 6 
6 16 11 10 9 8 7 7 7 
7 19 13 11 10 9 9 8 8 
8 21 15 12 11 10 10 9 9 
9 23 16 14 12 11 11 10 10 

10 25 18 15 14 12 12 11 11 

0.9 

0 4 2 2 2 1 1 1 1 
1 7 4 4 3 3 2 2 2 
2 9 6 5 4 4 4 3 3 
3 12 8 7 6 5 5 4 4 
4 14 10 8 7 6 6 6 5 
5 17 11 9 8 7 7 7 7 
6 19 13 11 10 8 8 8 8 
7 22 15 12 11 10 9 9 9 
8 24 16 14 12 11 10 10 10 
9 26 18 15 13 12 11 11 11 

10 29 20 16 15 13 12 12 12 

0.95 

0 5 3 2 2 2 1 1 1 
1 8 5 4 4 3 3 3 2 
2 11 7 6 5 4 4 4 4 
3 14 9 7 6 5 5 5 5 
4 16 11 9 8 7 6 6 6 
5 19 12 10 9 8 7 7 7 
6 21 14 12 10 9 8 8 8 
7 24 16 13 12 10 9 9 9 
8 26 18 14 13 11 11 10 10 
9 29 19 16 14 12 12 11 11 

10 31 21 17 15 14 13 12 12 

0.99 

0 7 4 3 3 2 2 2 2 
1 11 7 5 5 4 3 3 3 
2 14 9 7 6 5 4 4 4 
3 17 11 9 7 6 6 5 5 
4 20 13 10 9 7 7 6 6 
5 23 15 12 10 9 8 8 7 
6 25 17 13 12 10 9 9 8 
7 28 18 15 13 11 10 10 10 
8 30 20 16 14 12 11 11 11 
9 33 22 18 16 13 13 12 12 

10 36 24 19 17 15 14 13 13 
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Table 2. Operating characteristic function values for the sampling plan  0, 2, /n c t   for a given 

probability *P  

P* n   
0/   

0/t    2 4 6 8 10 12 

0.75 

7 0.628 0.85933 0.994463 0.999411 0.999888 0.99997 0.99999 
5 0.942 0.758991 0.985557 0.998274 0.999656 0.999905 0.999967 
4 1.257 0.697065 0.974337 0.996542 0.999275 0.999795 0.999928 
4 1.571 0.51865 0.933522 0.9892 0.997548 0.999276 0.999741 
3 2.356 0.536389 0.901897 0.979068 0.994523 0.998252 0.999345 
3 3.141 0.366443 0.780305 0.934349 0.979078 0.992497 0.996976 
3 3.927 0.259086 0.651114 0.864325 0.948163 0.97906 0.990869 
3 4.712 0.190563 0.536389 0.78025 0.901897 0.955662 0.979068 

0.90 

9 0.628 0.749567 0.987815 0.998641 0.999736 0.999928 0.999975 
6 0.942 0.639516 0.973686 0.996695 0.999329 0.999813 0.999935 
5 1.257 0.512032 0.945163 0.991985 0.998266 0.999501 0.999824 
4 1.571 0.51865 0.933522 0.9892 0.997548 0.999276 0.999741 
4 2.356 0.222004 0.743325 0.933578 0.980987 0.99364 0.99755 
4 3.141 0.098206 0.518914 0.816848 0.933606 0.974393 0.989217 
3 3.927 0.259086 0.651114 0.864325 0.948163 0.97906 0.990869 
3 4.712 0.190563 0.536389 0.78025 0.901897 0.955662 0.979068 

0.95 

11 0.628 0.631772 0.978039 0.997433 0.999494 0.999861 0.999952 
7 0.942 0.523698 0.958024 0.994463 0.998854 0.999677 0.999888 
6 1.257 0.35586 0.906065 0.985131 0.996681 0.99903 0.999655 
5 1.571 0.311317 0.867571 0.975906 0.994266 0.998268 0.999372 
4 2.356 0.222004 0.743325 0.933578 0.980987 0.99364 0.99755 
4 3.141 0.098206 0.518914 0.816848 0.933606 0.974393 0.989217 
4 3.927 0.047651 0.341284 0.666449 0.850637 0.933556 0.969202 
4 4.712 0.025325 0.222004 0.518826 0.743325 0.869726 0.933578 

0.99 

14 0.628 0.464414 0.957378 0.994663 0.99892 0.999699 0.999896 
9 0.942 0.328618 0.916115 0.987815 0.997383 0.99925 0.999736 
7 1.257 0.237226 0.858908 0.975856 0.99444 0.99835 0.999408 
6 1.571 0.174323 0.787955 0.956955 0.989273 0.996684 0.998782 
5 2.356 0.079876 0.572449 0.867672 0.958688 0.985527 0.994273 
4 3.141 0.098206 0.518914 0.816848 0.933606 0.974393 0.989217 
4 3.927 0.047651 0.341284 0.666449 0.850637 0.933556 0.969202 
4 4.712 0.025325 0.222004 0.518826 0.743325 0.869726 0.933578 
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Table 3.  Minimum ratio of the true mean life to specified mean life for the acceptance of a lot with 
producer’s risk of 0.05 with 𝛼 1;  𝛽 2 𝑎𝑛𝑑 𝜆 1 

P* c       0/t            
0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712 

0.75 

0 7.512 9.181 8.607 10.757 16.132 21.507 26.888 32.263 
1 3.429 3.74 4.991 6.238 6.896 9.194 11.495 13.792 
2 2.567 3.063 3.433 4.291 4.846 6.461 8.077 9.692 
3 2.348 2.744 3.236 3.419 3.908 5.21 6.513 7.815 
4 2.099 2.32 2.744 2.911 4.366 4.47 5.588 6.705 
5 1.937 2.242 2.417 3.021 3.858 3.971 4.964 5.957 
6 1.822 2.018 2.452 2.727 3.49 3.606 4.509 5.41 
7 1.807 1.996 2.248 2.503 3.209 4.278 4.158 4.989 
8 1.732 1.975 2.086 2.325 2.986 3.98 3.877 4.652 
9 1.672 1.847 2.14 2.18 2.802 3.736 3.646 4.375 

10 1.623 1.843 2.018 2.304 2.649 3.531 3.452 4.142 

0.90 

0 8.684 9.181 12.251 15.311 16.132 21.507 26.888 32.263 
1 4.155 4.5 6.004 6.238 9.354 9.194 11.495 13.792 
2 2.998 3.48 4.087 4.291 6.434 8.578 8.077 9.692 
3 2.636 3.027 3.662 4.044 5.127 6.835 6.513 7.815 
4 2.324 2.767 3.096 3.429 4.366 5.82 7.276 6.705 
5 2.209 2.426 2.721 3.021 3.858 5.143 6.43 7.715 
6 2.054 2.332 2.692 3.065 3.49 4.653 5.817 6.98 
7 2.001 2.261 2.465 2.809 3.753 4.278 5.349 6.418 
8 1.905 2.093 2.468 2.607 3.486 3.98 4.976 5.971 
9 1.828 2.059 2.309 2.442 3.268 3.736 4.671 5.604 

10 1.809 2.031 2.176 2.522 3.086 3.531 4.415 5.297 

0.95 

0 9.715 11.268 12.251 15.311 22.961 21.507 26.888 32.263 
1 4.473 5.144 6.004 7.504 9.354 12.471 15.591 13.792 
2 3.373 3.85 4.643 5.108 6.434 8.578 10.725 12.868 
3 2.895 3.285 3.662 4.044 5.127 6.835 8.545 10.254 
4 2.529 2.964 3.408 3.869 5.142 5.82 7.276 8.731 
5 2.372 2.596 2.991 3.401 4.53 5.143 6.43 7.715 
6 2.194 2.474 2.911 3.065 4.089 4.653 5.817 6.98 
7 2.121 2.382 2.663 3.081 3.753 4.278 5.349 6.418 
8 2.011 2.309 2.468 2.857 3.486 4.648 4.976 5.971 
9 1.97 2.157 2.465 2.674 3.268 4.357 4.671 5.604 

10 1.895 2.118 2.322 2.522 3.455 4.114 4.415 5.297 

0.99 

0 11.503 13.025 15.036 18.792 22.961 30.612 38.272 45.922 
1 5.314 6.232 6.864 8.578 11.253 12.471 15.591 18.708 
2 3.867 4.496 5.137 5.803 7.66 8.578 10.725 12.868 
3 3.244 3.745 4.383 4.576 6.065 8.086 8.545 10.254 
4 2.895 3.321 3.692 4.259 5.142 6.855 7.276 8.731 
5 2.669 3.047 3.464 3.738 5.1 6.039 7.55 7.715 
6 2.451 2.854 3.112 3.638 4.596 5.451 6.815 6.98 
7 2.341 2.605 3.017 3.328 4.213 5.003 6.255 7.505 
8 2.209 2.506 2.793 3.084 3.909 4.648 5.81 6.972 
9 2.146 2.425 2.748 3.08 3.662 4.882 5.447 6.536 

10 2.094 2.359 2.587 2.902 3.782 4.606 5.144 6.172 
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3.3.  Producer’s risk of the ASP (n, c, t/μo) 

Producer’s risk (PR) is another important parameter of the acceptance plans, 
it measures the probability that a consumer rejects a good lot. Based on binomial 
theory, PR is computed as follows: 

𝑃𝑅 𝑝
𝑛
𝑖 𝑝 1 𝑝  

or by using the incomplete beta function: 
𝑃𝑅 𝑝 𝐵 𝑐 1, 𝑛 𝑐  

Therefore, for the ASP (n, c, t/μo) is solved as an inequality to ensure that the 
producer’s risk is at most equal to a specific small value (i.e. say 𝑃∗) such that the ratio 
of the actual mean to the specified mean (i.e., μ/μo) is as specified by the producer. 
Therefore, the minimum ratio μ/μo is specified as a solution of the following inequality: 

𝑃𝑅 𝑝 1 𝑃∗   

where p = F([(t/μo) (μo/μ)]; μ). The minimum values of the ratio μ/μ0 for the ASP  
(n, c, t/μo) are given in Table 3. 

4.  Explaining the ASP (n, c, / ot  ) results 

In this article, the parameters of the proposed ASP (n, c, / ot  ), the smallest sample 
size, operating characteristic values and the minimum ratio of the true mean life to 
specified mean life, respectively, based on the PLxD, are given in Table 1 - Table 3.   

For example, assume that the researcher aims to ensure that the product’s mean lifetime 
is at least 1000 hours, with probability 𝑃∗ 0.90  when 2c  such that the experiment will 
be terminated at t = 942 hours; that is, 0.942. Then, from Table 1, the optimal sample 

size for this plan is 6, accordingly, the appropriated ASP (n, c, / ot  ) = (6, 2, 0.942). 
Moreover, from Table 2, the 𝑂𝐶 𝑝  for the ASP (6, 2, 0.942) are given in Table 4: 

Table 4.  OC and PR for the ASP (6, 2, 0.942) 

𝜇 𝜇⁄  2 4 6 8 10 12 
OC(p) 0.639516 0.973686 0.996695 0.999329 0.999813 0.999935 

PR 0.360484 0.026314 0.003305 0.000671 0.000187 0.000065 

The plan indicates that the lot is accepted if out of 6 items less than or equal to 
2 items fail before the time t. Now, if the true mean is four times as the specified mean 
𝜇 𝜇⁄ 4  then we are assured that the lot will be accepted under this ASP with 
probability equal to 0.973686 and the producer’s risk is about 0.026314. The probability 
of accepting a lot under the ASP (6, 2, 0.942) will be more than 0.97 if and only if the 
true mean is four times or more than the specified mean.  
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Furthermore, the results given in Table 3 indicated that when the consumer's risk 
is 10% (𝑃∗ 0.90) and by using the ASP (6, 2, 0.942); then, the minimum ratio 𝜇 𝜇⁄
3.48 when the producer risk is equal to 0.05. It implies that a lot with 6 items when  
c=2 will be rejected with probability less than or equal to 0.05. 

5.  Comparative Study 

The advantages of the proposed ASP based on LPxD are compared with other ASP 
under various types of distributions assuming that the actual mean is four times of the 
specified mean and the acceptable number of defectives is equal to two. The comparison 
criterion will be the cost of inspection based on the sample size of the ASP and the 
producer’s risk (PR). We said that a sampling plan with a smaller sample size is more 
efficient in reducing the cost of inspection compared to other ASP; at the sometime, we 
are seeking minimum value of the PR. The proposed ASP is compared with several 
ASPs that were proposed by Balakrishnan et al. (2007) for the generalized Birnbaum–
Saunders distribution (GBSD); Sampath and Lalitha (2016) for the hybrid exponential 
distribution (HED); Al-Nasser & Obeidat (2020) for q-Exponential distribution (QED) 
and Rao et al., (2008) for Marshall-Olkin extended Lomax distribution (MOELD). 

The comparative results are given in Table 5, which indicated that the proposed 
ASP based on PLxD gave equivalents or smaller sample sizes with smaller PR than the 
sample sizes and PR that were obtained by all other plans. These encouraging results 
means the proposed ASP is more efficient than the ASP that considered in these 
comparisons and it is worth to be used by the decision makers. 

Table 5.  Comparative ASP  0, 2, /n c t   when 0/  =4 and 𝑃∗ 0.95. 

0/t   
PLxD QED GBSD MOLED HED 

n PR n PR n PR n PR n PR 

0.628 11 0.0220 10 0.2762 17 0.0351 12 0.2464 16 0.4170 

0.942 7 0.0420 7 0.2665 11 0.0657 9 0.2842 11 0.4152 

1.257 6 0.0939 6 0.3104 9 0.1159 7 0.2789 9 0.4543 

1.571 5 0.1324 5 0.2980 7 0.1289 6 0.2929 7 0.4097 

2.356 4 0.2567 5 0.5221 6 0.2699 5 0.3752 6 0.5486 

3.141 4 0.4811 4 0.4846 5 0.3332 5 0.5420 5 0.5821 

3.927 4 0.6587 4 0.6123 5 0.4896 4 0.4650 4 0.5194 

4.712 4 0.7780 4 0.7113 4 0.4106 4 0.5662 4 0.6378 
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6.  Real Data Application 

Lifetime data measured in months of 20 small electric carts used by the 
manufacturing company for internal transportation and delivery services in a large 
manufacturing facility are used to illustrate the proposed ASP. The data are given as 
follows (Zimmer et al., 1998; Lio et al., 2010; Al-Omari et al., 2018): 0.9, 1.5, 2.3, 3.2, 
3.9, 5.0, 6.2, 7.5, 8.3, 10.4, 11.1, 12.6, 15.0, 16.3, 19.3, 22.6, 24.8, 31.5, 38.1 and 53.0.  

First, we need to test whether PLxD can be used or not. Several goodness of fit 
criteria were used to test if the data fit the model, including the minimum value of the 
function -log (likelihood) (-2MLL), Cramér-von Mises (CvM),  Akaike information 
criteria (AIC),  Bayesian information criteria (BIC), consistent Akaike information 
criteria (CAIC), Hannan-Quinn information criteria (HQIC) and two distribution 
tests; K-S and Anderson-Darling (A-D). The goodness of fit results were acceptable. 
The results indicate an excellent fit with the K-S distance value between the empirical 
and the theoretical PLxD equal to 0.1579606 with P-value equal to 0.6440496. 

Table 6.  Information measures and goodness of fit test for the small electric carts 

AIC BIC W AD -log(Likelihood) KS (P-Value) 

158.030 161.017 0.039061 0.261307 76.01396 0.157961 (0.64405) 

Moreover, the maximum likelihood estimation (MLE) method is used to estimate 
the PLxD unknown parameters. The results are given in Table 7: 

Table 7.  MLE estimates based on the small electric carts data 

Estimator Value Stdev 
95% C.I 

Lower Upper 

𝛼 0.7790995 0.5357288 -0.2709095 1.829109 

𝛽 1.3513955 0.4189634 0.5302422 2.172549 

𝜆 10.2523672 5.7100538 -0.9391325 21.443867 

 
Therefore, the mean life can be estimated as:  

𝜇
𝛼𝜆  Γ 𝛼 Γ

Γ 1 𝛼
 
4.360922 25.02012 0.9168207

0.9260023
108.03 

assumed T = 100 months. Therefore, 
𝑇
𝜇

100
108.03

0.925 
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based on the estimated values given in Table 7; and for 0.925; we re-evaluated 
the minimum sample sizes as given in Table 8: 

Table 8.  Minimum sample sizes for the small electric carts 

c 0 1 2 3 4 5 6 7 8 9 10 

*P  

0.75 1 2 3 4 5 7 8 9 10 11 12 

0.90 1 2 4 5 6 7 8 9 10 11 13 

0.95 1 3 4 5 6 7 9 10 11 12 13 

0.99 2 3 5 6 7 8 9 10 12 13 14 

 
From the new results, for example, corresponds to 𝑃* = 0.99 and 0.925, we 

obtained n = 14 when c = 10, therefore, the optimal acceptance sampling plan will be 
ASP (14, 10, 0.925). Based on the given data, this means that the manufacturing 
company can buy only 14 small electric carts in order to complete the manufacturing 
process within 100 hours, even if 10 out of these 14 electric carts have a mechanical 
failure within the manufacturing process time; with probability equal to 0.99.  

7.  Conclusion  

In this article, we introduce the lifetime truncated acceptance-sampling plan for the 
power Lomax distribution. We present the table for the smallest sample size necessary 
to ensure a certain mean life of the test items. The operating characteristic function 
values and the associated manufacturer’s risks are also discussed. The comparisons 
results with some other lifetime distribution showed that the proposed sampling plans 
based on PLxD are better and more efficient to be used when it applies. Therefore, 
the proposed plans can be used conveniently. 
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